

Thermodynamique | Chapitre 3 | Plan de cours

θ3 · Premier principe de la thermodynamique

I - Premier principe

- I.1 Énoncé
- I.2 Écriture courante du premier principe

II - Application du premier principe

- II.1 Retour sur les exemples du chapitre θ 2
 - a) Transformation isochore
 - b) Compression brutale
 - c) Compression lente
- II.2 Détente de Joule-Gay-Lussac
- II.3 Échauffement par effet Joule
- II.4 Mélange de deux gaz parfaits
 - a) Mélange brutal
 - b) Mélange lent

III - Enthalpie

- III.1 Définition
- III.2 Capacité thermique à pression constante
- III.3 Cas du gaz parfait
- III.4 Cas du liquide idéal

IV - Transformations monobares

- IV.1 Réécriture du premier principe
- IV.2 Calorimétrie
 - a) Principe
 - b) Valeur en eau du calorimètre
 - c) Méthode électrique
 - d) Mesure d'une capacité thermique
- IV.3 Enthalpie de changement d'état
 - a) Définition
 - b) Méthode
- IV.4 Application: préparation d'un thé glacé
 - a) Ajout de 4 glaçons
 - b) Ajout de 15 glaçons

Capacités exigibles du chapitre

Énoncer le premier principe de la thermodynamique (infinitésimal et macroscopique). Savoir exploiter le premier principe.	I.1 II
Définir l'enthalpie à partir de l'énergie interne.	III.1
Définir la capacité thermique à pression constante.	III.2
Exprimer la forme générale de H_m et $\mathcal{C}_{P,m}$ pour un GP :	III.3
$H_m(T) = \frac{\gamma RT}{\gamma - 1} \Rightarrow C_{P,m} = \frac{\gamma R}{\gamma - 1} \Rightarrow \Delta H = C_P \Delta T$	
Exprimer H_m et $\mathcal{C}_{P,m}$ pour un gaz parfait monoatomique et diatomique :	III.3
$H_m(T) = \frac{5}{2}RT \Rightarrow C_{P,m} = \frac{5}{2}R \qquad \text{et} \qquad H_m(T) = \frac{7}{2}RT \Rightarrow C_{P,m} = \frac{7}{2}R$	
Démontrer que, pour une CPII, $C_P \simeq C_V$ et donc que $H_m(T)$ est une fonction de l'unique variable T .	III. 4
Citer un ordre de grandeur de la capacité thermique massique de l'eau liquide.	III.4
Énoncer le premier principe pour une transformation monobare (ou isobare) en équilibre mécanique dans l'état initial et dans l'état final.	IV.1
Savoir exploiter le premier principe pour des expériences de calorimétrie.	IV.2
Définir une enthalpie de changement d'état.	IV.3.a
Connaître le signe de Δh_{fus} , Δh_{vap} et Δh_{sub} .	IV.3.a
Savoir exploiter le premier principe pour une transformation mettant en jeu des transitions de phases.	IV.4